MARC details
000 -LEADER |
fixed length control field |
02298nam a22006257a 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
OSt |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20240105151640.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240104s2020 enka b 001 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9780521728393 |
040 ## - CATALOGING SOURCE |
Transcribing agency |
QCPL |
Description conventions |
rda |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
515.7 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Robinson, James C. |
Relator term |
author |
245 13 - TITLE STATEMENT |
Title |
An introduction to functional analysis |
Statement of responsibility, etc. |
/ James C. Robinson |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Place of production, publication, distribution, manufacture |
Cambridge : |
Name of producer, publisher, distributor, manufacturer |
Cambridge University Press, |
Date of production, publication, distribution, manufacture, or copyright notice |
2020 |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xv, 403 pages : |
Other physical details |
illustrations |
336 ## - Content Type |
Source |
rdacontent |
Content type term |
text |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type term |
unmediated |
338 ## - Carrier Type |
Source |
rdacarrier |
Carrier type term |
volume |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc |
Includes bibliographical references (pages 394-395) and index. |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Part I. Preliminaries |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Vector space and bases |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Metric spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Part II. Normed linear spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Norms and normed spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Complete normed spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Finite-dimensional normed spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Spaces of continuous functions |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Completions and the Lebesgue space |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Part III. Hilbert spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Hilbert spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Orthonormal sets and orthonormal bases for Hilbert spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Closest points and approximation |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Linear maps between normed spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Dual spaces and the Riesz representation theorem |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
The Hilbert adjoint of a linear operator |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
The spectrum of a bounded linear operator |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
The spectrum of a bounded linear operator |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Compact linear operators |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
The Hilbert-Schmidt theorem |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Application : Sturm-Liouville problems |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Part IV. Banach spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Dual spaces of Banach spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
The Hahn-Banach theorem |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Some applications of the Hahn-Banach theorem |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Convex subsets of Banach Spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
The principle of uniform boundedness |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
The open mapping, inverse mapping, and closed graph theorems |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Spectral theory for compact operators |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Unbounded operators on Hilbert spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Reflexives spaces |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Weak and weak--convergence |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Functional analysis |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) |
9 (RLIN) |
10994 |
Topical term or geographic name as entry element |
Mathematics |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Source of classification or shelving scheme |
Dewey Decimal Classification |
Koha item type |
Book |